On the Possibility of Calculating Entropy, Free Energy, and Enthalpy of Vitreous Substances
نویسنده
چکیده
A critical analysis for the arguments in support of, and against, the traditional approach to thermodynamics of vitreous state is provided. In this approach one presumes that there is a continuous variation of the entropy in the glass-liquid transition temperature range, or a “continuous entropy approach” towards 0 K which produces a positive value of the entropy at T→ 0 K. I find that arguments given against this traditional approach use a different understanding of the thermodynamics of glass transition on cooling a liquid, because it suggests a discontinuity or “entropy loss approach” in the variation of entropy in the glass-liquid transition range. That is based on: (1) an unjustifiable use of the classical Boltzmann statistics for interpreting the value of entropy at absolute zero; (2) the rejection of thermodynamic analysis of systems with broken ergodicity, even though the possibility of analogous analysis was proposed already by Gibbs; (3) the possibility of a finite change in entropy of a system without absorption or release of heat; and, (4) describing the thermodynamic properties of glasses in the framework of functions, instead of functionals. The last one is necessary because for glasses the entropy and enthalpy are not functions of the state, but functionals, as defined by Gibbs’ in his classification.
منابع مشابه
Theoretical study of the solvent effects on the thermodynamic functions of Alanine and Valine Amino Acids
Using Gaussian 03, software the thermodynamic functions such as Gibbs free energy, G, Enthalpy, H, and Entropy, S, of Alanine and Valine amino acids were theoretically studied at different solvents. First, the Density Functional Theory (B3LYP) level with 3-21G, 6-31G and 6-31+G basis sets were employed to optimization of isolated Alanine and Valine amino acids in the gas phase. Moreover, Vib...
متن کاملTheoretical Thermodynamic Study of Arginine and Lysine Amino Acids at different Solvents
The thermodynamic functions such as enthalpy, H°, Gibbs free energy, G°, and entropy, S°, of Arginine and Lysine amino acids were theoretically studied at different polar solvents by using ²Gaussian o3², software. First, the structural optimization of isolated Arginine and Lysine were done in the gas phase by applying the Density Functional Theory (B3LYP) level ...
متن کاملTheoretical Thermodynamic Study of Solvent Effects on Serine and Threonine Amino Acids at Different Temperatures
The thermodynamic functions such as enthalpy (H), Gibbs free energy (G) and entropy (S) of Serineand Threonine amino acids were theoretically studied at different condition (solvents andtemperatures) by using Gussian o3, software. First, the structural optimization of isolated Serine andThreonine were done in the gas phase by using the Hartree-Fock (HF) level of theory with 3-21G, 6-31G and 6-3...
متن کاملTheoretical thermodynamic study of Pyrazole in the gas phase at the different temperatures
The thermodynamic functions such as enthalpy (H), Gibbs free energy (G) and entropy (S) ofPyrazole was theoretically studied at 5 different temperatures 25, 30, 35, 40 and 45°C by usingGussian o3, software. First, the structural optimization of isolated Pyrazole was done in the gas phaseby appling the Density Functional Theory (B3LYP) level with 3-21G, 6-31G and 6-31+G(d) basissets. Moreover, v...
متن کاملTheoretical thermodynamic study on the interaction between Fe2+ ion and Pyrazole
The interaction of Fe2+ ion with Pyrazole was theoretically studied by Gussian 03, software at HF/(LanL2DZ+6-31G) and HF/ (LanL2DZ+6-31G (d)) levels in gas phase and solution. In this study acompartion between optimized structures of Pyrazole molecule in aspect of thermodynamicparameters such as enthalpy (H°), Gibbs free energy (G°) and entropy (S°) in presence of metallic ion(Fe2+), was perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018